Notice: Most notes, figures, and formulas are from textbook (Microelectronic Circuits, Sixth Edition, Copyright © 2010 by Oxford University Press, Inc) Some notes are borrowed from Dr. Whites' website
Zener Diode

- Diodes operating in the breakdown region can be used as voltage regulator: almost constant voltage drop.

- Special diodes are designed to operate specifically in the breakdown region: breakdown diodes, or zener diodes.

- Circuit symbol:
Modeling the Zener Diode

- **Knee current:** I_{ZK}. If current is greater than I_{ZK}, i-v characteristic is almost-linear, i.e., straight line.
- **Test current:** I_{ZT} and corresponding voltage V_Z at current I_{ZT}.
- **Zener voltage changes by ΔV**
 \[\Delta V = r_Z \Delta I \]
- **r_Z: incremental resistance**, or dynamic resistance is an inverse slope of i-v curve at point Q
- Usually, I_{ZK}, V_Z and r_Z are specified by manufacturer, for example, 6.8V drop at a specified test current of 10mA.
- r_Z is in the range of a few Ω to a few hundreds of Ω.
- Steeper line (**lower** r_Z) is desirable due to almost constant voltage over a wide range of current.
• Model of Zener Diode: \(V_Z = V_{Z0} + r_Z I_Z, I_Z > I_{ZK} \)
Example

\[V_Z = 6.8V, I_Z=5mA, r_Z=20 \Omega \text{ and } I_{ZK}=0.2mA. \] The supply voltage \(V^+ \) is normally 10V but may vary by \(\pm 1 \text{V} \).

- Find \(V_o \) with no load (\textit{assume} \(V^+=10V \)).
- Find the change in \(V_o \) resulting from \(\pm 1 \text{V} \) at power supply. Note that \(\Delta V_o/\Delta V^+ \) usually expressed in mV/V known as line regulation
- Find the change in \(V_o \) resulting from connecting a load resistance \(R_L \) that draws a current \(I_L = 1mA \)
- Find the change in \(V_o \) when \(R_L = 2k \Omega \)
Find the minimum \(R_L \) for which the diode still operates in the breakdown region.