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ABSTRACT

Formation control of unmanned aerial vehicles (UAVs) has many applications including target tracking, surveil-
lance, terrain mapping, precision agriculture, etc. Although many centralized control methods (single command
center/computer controlling the UAVs) exist, there are no standard decentralized control frameworks in the lit-
erature. In this paper, we present a novel UAV swarm formation control approach based on a decision theoretic
approach. Specifically, we pose the decentralized swarm motion control problem as a Decentralized Markov Deci-
sion Process (Dec-MDP). Here, the objective is to drive the swarm from an initial geographical region to another
geographical region where the swarm must lie on a certain geometrical surface (e.g., surface of a sphere). As
most decision theoretic formulations suffer from the curse of dimensionality, we adapt an approximate dynamic
programming method called nominal belief-state optimization (NBO) to solve the formation control problem
approximately. We perform simulation studies in MATLAB to validate the performance of the algorithms.

Keywords: Swarm intelligence, formation control, decentralized Markov decision process, approximate dynamic
programming

1. INTRODUCTION

Unmanned aerial vehicle (UAV) swarm formation control has applications in various fields such as infrastructure
inspection1 and surveillance,2 target tracking,3 and precision agriculture. The main objective in these application
scenarios is to let the UAVs fly or hover in a certain geometrical formation, e.g., hover at locations lying
on the surface of a sphere in a certain geographical region. There are methods existing in the literature to
control UAV swarms using centralized methods,4 where there is command center (centralized system) computing
optimal motion commands for the UAVs. Although centralized methods are comparatively easy to develop and
implement, but when the swarm is large, the computational complexity for evaluating optimal motion commands
is extremely high. This is because the computational complexity in optimizing the UAV motion commands grows
exponentially with the number of UAVs in the system. We present a novel decentralized UAV swarm formation
control approach.

In this paper, the word swarm refers to a collections of UAVs. Each UAV makes decisions on its local
kinematic controls, i.e., bank angle and forward acceleration. All UAVs in the system are aware of the global
objective, which is arriving at a position on a given geometrical surface in a geographical region. We call the
geometrical region in which UAVs are supposed to arrive as formation shape which can be any kind of geometrical
shape i.e., rectangular, circular and so on. The swarm should complete the global objectives in the shortest time
possible while avoiding collisions among the UAVs in the swarm.

We use a dynamic programming approach to solve the decentralized swarm motion control problem. Specif-
ically, we formulate the swarm control problem as a decentralized Markov decision process. As most dynamic
programming problems suffer from high dimensionality, we adapt a fast heuristic approach called nominal belief-
state optimization (NBO) to solve the formation control problem approximately.
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Swarm formation is required in many applications where a collection of UAVs are required to collect sensor
data (e.g., images) from a certain geographical region where it may be optimal for the UAVs to lie on a geometrical
surface. We develop our methods in 2-D in this study, which will be extended to 3-D in our future studies.

1.1 Literature Review

Taking difficulties and drawbacks of centralized methods into account, a few papers in the literature developed
decentralized methods to control UAV swarms. The authors of5 used the decentralized partially observable
Markov decision process (Dec-POMDP) to formulate and solve a target tracking problem with a swarm of
decentralized UAVs. As solving decentralized POMDP is very hard, the authors introduced an approximate
dynamic programming method called nominal belief-state optimization (NBO) to solve the control problem.
The authors of6 used fixed-wing UAV motion models with forward acceleration and bank angle being the UAV
motion controls, which are subject to certain constraints. They also account collision avoidance between UAVs
and obstacles and among UAVs, and wind disturbance on UAVs. However, their methods were developed for a
centralized system, as opposed to our decentralized system studied here. Moreover, their methods were developed
for a different application - multi-target tracking.

The authors in7 propose formation control of a group of UAVs using decentralized Model Predictive Control
(MPC). In their work, the UAVs were able to avoid collisions with multiple obstacles in a decentralized manner.
They used figure of eight as reference trajectory and result shows UAVs were able to avoid collision with obstacles,
and between UAVs. Several recent papers describe formation control of different geometric shapes, e.g. multi-
agent circular shape with a leader.8 The authors of8 propose centralized formation control, which is not suitable
for swarm control when the number of UAVs in the swarm is large.

1.2 Key Contributions

• We formulate the UAV swarm formation control problem as a decentralized Markov decision process (Dec-
MDP).

• We extend an approximate dynamic programming method called nominal belief-state optimization (NBO)
to solve the formation control problem.

• We perform simulation studies to validate the swarm formation control algorithms developed here.

• We perform numerical studies to quantify the impact of neighborhood threshold on average computation
time and average pairwise distance.

The remaining parts of this paper are organized as follows. Section 2 provides the problem specification.
We formulate the problem using decentralized Markov decision process in Section 3 followed by the discussion
on the NBO approach in Section 4. UAV motion model and kinematic equations are provided in Section 5.
In Section 6, we discuss simulation results to evaluate the performance of our method. Finally, we provide
conclusions in Section 7.

2. PROBLEM SPECIFICATION

Unmanned aerial vehicles: We assume UAV motion dynamics as described in,6 where the motion controls
are forward acceleration and bank angle. UAVs are allowed to hover at any location, i.e., the minimum speed
limit on the UAVs is zero.

Communications and Sensing: We assume that UAVs are equipped with sensing systems and wireless
transceivers using which each UAV learns the exact location and the velocity of the nearest neighboring UAV.
Our decentralized method requires only the state of the nearest neighbor to optimize the control commands of
the local UAV.

Objective: The goal is to control the swarm (optimizing control commands) in a decentralized manner such
that the swarm arrives on a certain known geometrical surface in a certain region in the shortest time possible.
The UAVs must complete this objective while avoiding collisions.



3. PROBLEM FORMULATION

We formulate the swarm formation control problem as a decentralized Markov decision process (Dec-MDP). Dec-
MDP is a mathematical formulation useful for modeling control problems for decentralized decision making. This
formulation has the following advantages: 1) allows us to efficiently utilize the computing resources on-board all
the UAVs, 2) requires less computational time compared to a centralized approach, 3) as UAVs are decentralized,
point of failure of the entire mission is minimal, 4) decentralized approach provides robustness to addition or
deletion of UAVs to the swarm, 5) UAVs do not need to rely on a central command center for evaluating optimal
control commands. With Dec-MDP formulation, we can achieve the above features in our swarm control method.
We define the key components of Dec-MDP as follows. Here, k represents the discrete-time index.

3.1 Dec-MDP Ingredients

Agents/UAVs: We assume there are N UAVs in our system. The set of UAVs is given by I = {1, ...., N}.
Traditionally, this component is referred to as set of agents or set of independent decision makers. Here, an agent
is a UAV.

States: The state of the system sk includes the locations and velocities of each UAV.

Actions: The actions are the controllable aspects of the system. We define action vector ak = (a1k, . . . , a
N
k ),

where aik represents the action vector at UAV i, which includes the forward acceleration and the bank angle for
the UAV.

State Transition Law: State transition law describes how the state evolves over time. Specifically, the
transition law is a conditional probability distribution of the next state given the current state and the current
control actions (assuming Markovian property holds). The transition law is given by sk+1 ∼ pk(·|sk, ak), where
pk is the conditional probability distribution. Since the state of the system only includes the states of the UAVs,
the state transition law is completely determined by the kinematic equations of the UAVs (discussed in the next
section). In other words, the transition law is given by sik+1 = ψ(sik, a

i
k) + wi

k, i = 1, . . . , N , where sik represents
the state of the ith UAV and aik indicates the local kinematic controls (forward acceleration and bank angle) of
ith UAV, ψ represents the kinematic motion model as discussed in the next section, and wi

k represents noise,
which is modeled as a zero-mean Gaussian random variable.

Cost Function: The cost function C(sk, ak) deals with cost of being in a given state sk and performing
actions ak. Here, sk represents the global state, i.e., the state of all the UAVs in the system. Since the problem
is decentralized, each UAV only has access to its local state and the state of the nearest neighboring UAV. Let
bik = (sik, s

nn
k ) represent that local system state at UAV i, where snnk is the state of the nearest neighboring UAV,

and nn ∈ I\{i}.
Let di is the destination location UAV i must reach, and dcoll,thresh is the distance between the UAVs below

which the UAVs are considered to be at the risk of collision. We now define the local cost function for UAV i as
follows:

c(bik, a
i
k, a

nn
k ) = w1

[
dist(si,posk , di) + dist(snn,posk ,dnn)

]
+

w2

[
dist(sik, s

nn
k )−1I(dist

(
sik, s

nn
k ) < dcoll,thresh

)]
where si,posk represents the location of the ith UAV, w1 and w2 are weighting parameters, dist(a, b) represents
the distance between locations a and b, and I(a) is the indicator function, i.e., I(a) = 1 if the argument a is true
and 0 otherwise.

By minimizing the above cost function, each UAV optimizes its own control commands and that of its
neighbor, but only implement its own local control commands and discards the commands optimizes for its
neighbor. The first part of the cost function lets the UAV reach its destination, while the second part minimizes
the risk of collisions between UAVs.

The Dec-MDP starts at an initial random state s0 and the state of the system evolves according to the
state-transition law and the control commands applied at each UAV. The overall objective is to optimize the



control commands at each UAV i such that the expected cumulative local cost over a horizon H (shown below)
is minimized.

min
{ai

k,a
nn
k },k=0,...,H−1

E

[
H−1∑
k=0

c(bik, a
i
k, a

nn
k )

∣∣∣∣∣bi0
]
, (1)

where bi0 is the initial local state at UAV i, and the expectation E[·] is over the stochastic evolution of the local
state over time (due to the random variables present in the UAV kinematic equations).

4. NBO APPROACH TO SOLVE DEC-MDP

It is well know in the literature that solving Eq. 1 exactly is computationally prohibitive and not practical. For
this reason, we extend a heuristic approach called nominal belief-state optimization (NBO).6 As discussed in
the previous section, we let a UAV optimize its own and its nearest neighbor’s kinematic controls over the time
horizon H. Once the UAV calculates local controls for itself and its neighbors, the UAV implement its own
controls and discards its neighbors controls at each time step. Since obtaining the expectation in Eq. 1 exactly is
not tractable, the NBO approach approximates this expectation by assuming that all the future random variables
(over which the expectation is supposed to be evaluated) assume the nominal values, i.e., the mean values. Since
we model the above-mentioned random variable as zero-mean Gaussian, the nominal values are simply zeros. In
summary, the NBO approach approximates the cumulative cost function in Eq. 1 by replacing the expectation
with the random trajectory of the states over time by a sequence of states obtained by replacing future random
variables with zeros.

In the NBO method, the objective function at agent i is approximated as follows:

J(bi0) ≈
H−1∑
k=0

c(b̂ik, a
i
k, a

nn
k ),

where b̂i1, b̂
i
2, . . . , b̂

i
H−1 is a nominal local state sequence.

5. UAV MOTION MODEL

The state of the ith UAV at time k is given by sik =
(
pik, q

i
k, V

i
k , θ

i
k

)
, where (pik, q

i
k) represents the position

coordinates, V i
k represents the speed, and θik represents the heading angle. The kinematic control action for

UAV i is given by aik = (f ik, φ
i
k), where f ik is the forward acceleration and φik is the bank angle of the UAV. The

kinematic equations of the UAV motion6 are as follows:

V i
k+1 =

[
V i
k + f ikT

]Vmax

Vmin
+ wi,speed

k

θik+1 = θik + (gT tan(φik)/V i
k ) + wi,heading

k ,

pik+1 = pik + V i
kT cos(θik) + wi,xpos

k ,

qik+1 = qik + V i
kT sin(θik) + wi,ypos

k ,

where [v]Vmax

Vmin
= max {Vmin,min(Vmax, v)}, Vmin and Vmax are the minimum and the maximum limits of each

UAV, g is the acceleration due to gravity, T is the length of the time step, and wi,speed
k , wi,heading

k , wi,xpos
k , wi,ypos

k

are the zero-mean Gaussian random variables.

6. SIMULATION RESULTS

We assume that each UAV has its own on-board computer to compute the local optimal control decisions. We
implement the above-discussed NBO approach to solve the swarm control problem in MATLAB. We test our
methods with three formation shapes - a circular shape, a rectangular shape, and a square shape. The UAVs
are aware of the shape dimensions and the exact location of shape. Each UAV randomly picks a location on the
formation shape, and uses the NBO approach to arrive at this location. We use MATLAB’s fmincon to solve
the NBO optimization problem. Here, we set the horizon length to H = 7 time steps.



(a) Circular formation (b) Rectangle formation (c) Square formation

Figure 1: 9 UAVs converging to the formation shapes using the Dec-MDP approach
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Figure 2: Distance between each pair of UAVs

We define the following metrics to measure the performance of our formation control approach: 1) Tc - average
computation time to evaluate the optimal control commands and 2) Tf : time taken for the swarm to arrive on
the formation shape. As a benchmark method, we use a centralized approach to solve the above-discussed swarm
formation control problem. In other words, we use a single NBO algorithm, which optimizes the motion control
commands for all the UAVs together based on the global state of the system. We implement this centralized
algorithm in MATLAB.
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Figure 3: Computation time (Tc): centralized vs decentralized method

Dec-MDP Centralized
Tf (sec) 16.7 25.98

Table 1: Average time taken by the swarm to arrive at the formation shape.

We implement the Dec-MDP approach with a circular formation shape, a rectangular formation shape, and
a square formation shape. The resulting swarm motion is shown in Figures 1a, 1b, and 1c respectively. For the
scenario in Figure 1a, we also plot the distance between every pair of UAVs in the swarm as shown in Figure 2.
Here, we assume that there is a collision risk between a pair of UAVs when the distance between them is less
than 10 m. Clearly, the figures 1, and 2 demonstrate that our decentralized algorithm drives the swarm to the
destination while successfully avoiding collisions between the UAVs.

We calculate the Tc and Tf values for both the centralized and the decentralized algorithms for 9 UAVs.
Figure 3 and Table I clearly demonstrates that our decentralized method significantly outperforms the centralized
method with respect to both the metrics Tc and Tf .

We now compute average computation time and average pairwise distance with respect to neighborhood
threshold where each UAV communicates with other UAVs within the radius of neighborhood threshold. If
neighborhood threshold is infinity, a UAV can communicate with all other UAVs in the swarm. UAVs optimize
its decision together with neighbors which depends on neighborhood threshold and implement its own control.
We expect that with the increase of neighborhood threshold, average computation time rises and after certain
neighborhood threshold, average computation time saturates. Figure 4 shows average computation time rise
until neighborhood threshold reach 240 m and then waves between 20 to 25 sec.

We also expect that with the increase of neighborhood threshold, average pairwise distance drops. The reason
we are interested in analyzing average pairwise distance is, we expect the swarm to be as closely as possible while
avoiding collision between UAVs. Small average pairwise distance allows the swarm to be more cooperative while
saving battery life as communication distance depends on distance between UAVs. Figure 5 and 4 suggest that
neighborhood threshold more than 130 m allows UAVs to stay closely in the swarm with reasonable computation
cost.
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Figure 4: Average computation time with respect to neighborhood threshold
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Figure 5: Average pairwise distance with respect to neighborhood threshold



7. CONCLUSIONS

In this study, we designed a decentralized formation control problem to bring a swarm of UAVs from initial
position to target location in certain geometrical shape (formation shape) using decentralized Markov decision
process (Dec-MDP). We extended an approximate dynamic programming method called nominal belief-state
optimization (NBO) to solve the formation control problem, which we denoted as Dec-MDP. We accounted
collision avoidance between UAVs which was clearly described with numerical results in section 6. We used
centralized method to compare performance metrics of our Dec-MDP approach. The result shows that the
average computation time (Tc) and time taken for the swarm to arrive at the formation shape Tf of Dec-MDP
approach is significantly smaller than that of the centralized method. We also performed numerical studies to
quantify the impact of neighborhood threshold on average computation time and average pairwise distance.
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