Dr. Zhengtao Zhu

Department of Chemistry and
Applied Biological Sciences
South Dakota School of Mines and Technology

Laboratory of Advanced Materials
for Flexible Electronics & Sensors

Peer-Reviewed Publications:
  1. F. Zheng and Z.-T. Zhu∗, “Flexible, freestanding, and functional SiO2 nanofibrous mat for dye sensitized solar cell and photocatalytic dye degradation,” ACS Applied Nano Materials, DOI: 10.1021/acsanm.7b00316. 
  2. Y. Ding, W. Xu, Y. Yu, H. Hou, and Z.-T. Zhu∗, “One-step preparation of highly hydrophobic and oleophilic melamine sponges via metal-ion induced wettability transition,” ACS Applied Materials & Interfaces, 10, 6652 (2018). 
  3. F. Zheng and Z.-T. Zhu∗, “Preparation of the Au@TiO2 nanofibers by one-step electrospinning for the composite photoanode of dye-sensitized solar cells,” Materials Chemistry and Physics, 208, 35 (2018). 
  4. H. Wang, W. Wang∗, H. Wang, X. Jin, J. Li, and Z.-T. Zhu, “One-way water transport fabrics with hydrophobic rough surface formed in one-step electrospray,” Materials Letters, 215, 110 (2018).
  5. T. Xu, Z. Wang, Y. Ding, W. Xu, W. Wu∗, Z.-T. Zhu, and H. Fong∗, “Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds,” Carbohydrate Polymers, 179, 164 (2018). 
  6. W. Xu, Y. Ding, T. Yang, Y. Yu, R. Huang, Z.-T. Zhu, H. Fong∗, and H. Hou∗, “An innovative approach for the preparation of high-performance electrospun poly (p-phenylene)-based polymer nanofiber belts,” Macromolecules, 50, 9760 (2017).
  7. T. Xu, Y. Ding, Y. Zhao, W. Wu, H. Fong,∗ and Z.-T. Zhu∗, “Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for highly sensitive tactile pressure sensor,” Journal of Materials Chemistry C, 5, 10288 (2017). 
  8. Y. Ding, W. Xu, W. Wang, H. Fong,∗ and Z.-T. Zhu∗, “Scalable and facile preparation of highly stretchable electrospun PEDOT:PSS@PU fibrous nonwovens towards wearable conductive textile applications,” ACS Applied Materials & Interfaces, 9, 30014 (2017). 
  9. Y. Zhao, K. Miao, Z.-T. Zhu∗, and L.-J. Fan∗, “Fluorescence quenching of a conjugated polymer by synergistic amine-carboxylic acid and π?π interactions for selective detection of aromatic amines in aqueous solution,” ACS Sensors, 2, 842 (2017). 
  10. K. Miao, H. Zhang, L. Sun, Z.-T. Zhu, and L.-J. Fan∗, “Detection of glutaraldehyde in aqueous environments based on fluorescence quenching of a conjugated polymer with pendant protonated primary amino groups,” Journal of Materials Chemistry C, 5, 5010 (2017). 
  11. Y. Ding, J. Yang, C. Tolle, and Z.-T. Zhu∗, “Highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring,” RSC Advances, 6, 79114 (2016). 
  12. Y. Ding, F. Zheng, and Z.-T. Zhu∗, “Low-temperature seeding and hydrothermal growth of ZnO nanorod on poly(3, 4-ethylene dioxythiophene):poly(styrene sulfonic acid),” Materials Letters, 183, 197 (2016). 
  13. Y. Ding, H. Hou∗, Y. Zhao, Z.-T. Zhu, and H. Fong∗, “Electrospun polyimide nanofibers and their applications,” Progress in Polymer Science, 61, 67 (2016). 
  14. X. Wang, M. Xi, X. Wang, H. Fong∗, and Z.-T. Zhu∗, “Flexible composite felt of electrospun TiO2 and SiO2 nanofibers infused with TiO2 nanoparticles for lithium ion battery anode,” Electrochimica Acta, 190, 811 (2016). 
  15. X. Wang, M. Xi, F. Zheng, B. Ding, H. Fong∗, and Z.-T. Zhu∗, “Reduction of crack formation in TiO2 mesoporous films prepared from binder-free nanoparticle pastes via incorporation of electrospun SiO2 or TiO2 nanofibers for dye-sensitized solar cells,” Nano Energy, 12, 794 (2015). 
  16. X. Wang, M. Xi, H. Fong∗, and Z.-T. Zhu∗, “Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO2 nanoparticles and electrospun TiO2/SiO2 nanofibers,” ACS Applied Materials & Interfaces, 6, 15925 (2014).
  17. X. Wang, L. Guo, P. F. Xia, F. Zheng, M. S. Wong∗, and Z.-T. Zhu∗, “Effects of surface modification on dye-sensitized solar cell based on an organic dye with naphtho [2,1-b:3,4-b’] dithiophene as the conjugated linker,” ACS Applied Materials & Interfaces, 6, 1926 (2014). 
  18. M. Xi, X. Wang, Y. Zhao, Q. Feng, F. Zheng, Z.-T. Zhu∗, and H. Fong∗, “Mechanically flexible hybrid mat consisting of TiO2 and SiO2 nanofibers electrospun via dual spinnerets for photo-detector,” Materials Letters, 120, 219 (2014). 
  19. M. Xi, X. Wang, Y. Zhao, Z.-T. Zhu∗, and H. Fong∗, “Electrospun ZnO/SiO2 hybrid nanofibrous mat for flexible ultraviolet sensor,” Applied Physics Letters, 104, 133102 (2014). 
  20. C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Zhou, Y. Zhao, Y. Wang, X.-F. Wu∗, Z.-T. Zhu, and H. Fong∗, “Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors,” Journal of Power Sources, 247, 134 (2014). 
  21. X. Wang, L. Guo, P. F. Xia, F. Zheng, M. S. Wong∗, and Z.-T. Zhu∗, “Dye-sensitized solar cells based on organic dyes with naphtho [2, 1-b: 3, 4-b"] dithiophene as the conjugated linker,” Journal of Materials Chemistry A, 1, 13328 (2013). 
  22. X. Wang, G. He, H. Fong∗, and Z.-T. Zhu∗, “Electron transport and recombination in photoanode of electrospun TiO2 nanotubes for dye-sensitized solar cells,” The Journal of Physical Chemistry C, 117, 1641 (2013). 
  23. G. He, X. Wang, M. Xi, F. Zheng, Z.-T. Zhu∗, and H. Fong∗, “Fabrication and evaluation of dyesensitized solar cells with photoanodes based on electrospun TiO2 nanotubes,” Materials Letters, 106, 115 (2013). 
  24. Y. Bao, C. Lai, Z.-T. Zhu, H. Fong∗, and C. Jiang∗, “SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching,” RSC Advances, 3, 8998 (2013). 
  25. G. He, Y. Cai, Y. Zhao, X. Wang, C. Lai, M. Xi, Z.-T. Zhu∗, and H. Fong∗, “Electrospun anatasephase TiO2 nanofibers with different morphological structures and specific surface areas,” Journal of Colloid and Interface Science, 398, 103 (2013). 
  26. Lai2013 C. Lai, X. Wang, Y. Zhao, H. Fong∗, and Z.-T. Zhu∗, “Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers,” RSC Advances, 3, 6640 (2013). 
  27. Y. Zhao, X. Wang, C. Lai, G. He, L. Zhang, H. Fong∗, and Z.-T. Zhu∗, “Electrospun carbon nanofibrous mats surface-decorated with Pd nanoparticles via the supercritical CO2 method for sensing of H2,” RSC Advances, 2, 10195 (2012).
  28. L. Zhang, X. Wang, Y. Zhao, Z.-T. Zhu∗, and H. Fong∗, “Electrospun carbon nano-felt surfaceattached with Pd nanoparticles for hydrogen sensing application,” Materials Letters, 68, 133 (2012).
  29. N. Hedin, V. Sobolev∗, L. Zhang, Z.-T. Zhu, and H. Fong∗, “Electrical properties of electrospun carbon nanofibers,” Journal of Materials Science 46, 6453 (2011).
  30. X. Wang, S. Karanjit, L. Zhang, H. Fong, Q. Qiao∗, and Z.-T. Zhu∗, “Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles,” Applied Physics Letters, 98, 082114 (2011). 
  31. K. Yin, L. Zhang, C. Lai, L. Zhong, S. Smith, H. Fong∗, and Z.-T. Zhu∗, “Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT,” Journal of Materials Chemistry, 21, 444 (2010). 
  32. R. Jetson, K. Yin, K. Donovan, and Z.-T. Zhu∗, “Effects of surface modification on the fluorescence properties of conjugated polymer/ZnO nanocomposites,” Materials Chemistry and Physics, 124, 417 (2010).
  33. P. Joshi, L. Zhang, D. Davoux, Z.-T. Zhu, D. Galipeau, H. Fong∗, and Q. Qiao∗, “Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency,” Energy & Environmental Science, 3, 1507 (2010). 
  34. K. Yin and Z.-T. Zhu∗, ““One-pot” synthesis, characterization, and NH3 sensing of Pd/PEDOT:PSS nanocomposite,” Synthetic Metals, 160, 1115 (2010). 
  35. Z.-T. Zhu∗, L. Zhang, J. Y. Howe, Y. Liao, J. T. Speidel, S. Smith, and H. Fong∗, “Aligned electrospun ZnO nanofibers for simple and sensitive ultraviolet nanosensors,” Chemical Communications, 2568 (2009). 
  36. Z.-T. Zhu∗, L. Zhang, S. Smith, H. Fong∗, Y. Sun, and D. Gosztola, “Fluorescence studies of electrospun MEH-PPV/PEO nanofibers,” Synthetic Metals, 159, 1454 (2009). 
  37. Y. Liao, L. Zhang, Y. Gao, Z.-T. Zhu∗, and H. Fong∗, “Preparation, characterization, and encapsulation/release studies of a composite nanofiber mat electrospun from an emulsion containing poly (lactic-co-glycolic acid),” Polymer, 49, 5294 (2008). 
  38. J.-H. Ahn, Z.-T. Zhu, S.-I. Park, J. Xiao, Y. Huang, and J. A. Rogers∗, “Defect tolerance and nanomechanics in transistors that use semiconductor nanomaterials and ultrathin dielectrics,” Advanced Functional Materials, 18, 2535 (2008). 
  39. J.-H. Ahn, H.-S. Kim, E. Menard, K. J. Lee, Z.-T. Zhu, D.-H. Kim, R. G. Nuzzo, J. A. Rogers∗, I. Amlani, V. Kushner, S. G Thomas, and T. Duenas, “Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon,” Applied Physics Letters, 90, 213501 (2007). 
  40. J.-H. Ahn, H.-S. Kim, K. J. Lee, Z.-T. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers∗, “High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates,” IEEE Electron Device Letters, 27, 460 (2006).
  41. Q. Cao, S.-H. Hur, Z.-T. Zhu, Y. Sun, C.-J. Wang, M. A. Meitl, M. Shim, and J. A. Rogers∗, “Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics,” Advanced Materials, 18, 304 (2006). 
  42. Q. Cao, Z.-T. Zhu, M. G. Lemaitre, M.-G. Xia, M. Shim, and J. A. Rogers∗, “Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes,” Applied Physics Letters, 88, 113511 (2006). 
  43. S. Mack, M. Meitl, A. Baca, Z.-T. Zhu, and J. Rogers∗, “Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers,” Applied Physics Letters, 88, 213101 (2006). 
  44. M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers∗, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nature Materials, 5, 33 (2005). 
  45. Z.-T. Zhu, E. Menard, K. Hurley, R. Nuzzo, and J. Rogers∗, “Spin on dopants for high-performance single-crystal silicon transistors on flexible plastic substrates,” Applied Physics Letters, 86, 133507 (2005). 
  46. Z.-T. Zhu, J. T. Mabeck, C. Zhu, N. C. Cady, C. A. Batt, and G. G. Malliaras∗, “A simple poly (3,4-ethylene dioxythiophene)/poly (styrene sulfonic acid) transistor for glucose sensing at neutral pH,” Chemical Communications, 1556 (2004). 
  47. A. C. Mayer, M. L. Swiggers, C. J. Johnson, J. L. Mack, Z.-T. Zhu, R. L. Headrick, and G. G. Malliaras, “Pentacene-based field effect transistors,” Thin Film Transistor Technologies VI, 2002, 288 (2003). 
  48. Z.-T. Zhu, J. Musfeldt∗, K. Kamaras, G. Adams, J. Page, L. Kashevarova, A. Rakhmanina, and V. Davydov, “Far-infrared vibrational properties of linear C60 polymers: A comparison between neutral and charged materials,” Physical Review B, 67, 045409 (2003). 
  49. Z.-T. Zhu, J. Musfeldt∗, K. Kamaras, G. Adams, J. Page, V. Davydov, L. Kashevarova, and A. Rakhmanina, “Far-infrared vibrational properties of tetragonal C60 polymer,” Physical Review B, 67, 045409 (2003). 
  50. Z.-T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras∗, “Humidity sensors based on pentacene thin-film transistors,” Applied Physics Letters, 81, 4643 (2002).
  51. J. Choi, Z.-T. Zhu, J. Musfeldt∗, G. Ragghianti, D. Mandrus, B. Sales, and J. Thompson, “Local symmetry breaking in K2V3O8 as studied by infrared spectroscopy,” Physical Review B, 65, 054101 (2002). 
  52. J. Musfeldt∗, Z.-T. Zhu, Z. Teweldemedhin, and M. Greenblatt, “Layered tungsten bronzes: Tuning the optical properties by changing the layer thickness,” Journal de Physique IV , 12, 361 (2002). 
  53. Z.-T. Zhu, J. Musfeldt∗, H.-J. Koo, M.-H. Whangbo, Z. Teweldemedhin, and M. Greenblatt, “Dimensionality effects on the optical properties of (PO2)4(WO3)2m (m = 2; 4; 6; 7),” Chemistry of Materials, 14, 2607 (2002). 
  54. Z.-T. Zhu, J. Musfeldt∗, Z. Teweldemedhin, and M. Greenblatt, “Anisotropic ab-plane optical response of the charge-density-wave superconductor P4W14O50,” Physical Review B, 65, 214519 (2002). 
  55. I. Olejniczak, B. Jones, J. Dong, J. Pigos, Z.-T. Zhu, A. Garlach, J. Musfeldt∗, H.-J. Koo, M.-H. Whangbo, J. Schlueter, et al., “Optical studies of β00-(ET)2 SF5RSO3 (R=CH2CF2, CHFCF2 and CHF) system: Chemical tuning of the counterion,” Synthetic Metals, 120, 785 (2001). 
  56. J. M. Pigos, B. Jones, Z.-T. Zhu, J. Musfeldt∗, C. Homes, H.-J. Koo, M.-H. Whangbo, J. Schlueter, B. Ward, H. Wang, U. Geiser, U.,J. Mohtasham, R. Winter, G. Gard, “Infrared and optical properties of β0-(ET)2SF5CF2SO3: Evidence for a 45 K spin-Peierls transition,” Chemistry of Materials, 13, 1326 (2001). 
  57. Z.-T. Zhu, J. Musfeldt∗, Z. Teweldemedhin, and M. Greenblatt, “Vibrational properties of monophosphate tungsten bronzes (PO2)4(WO3)2m (m = 4; 6),” Chemistry of Materials, 13, 2940 (2001).
  58. Z.-T. Zhu, J. Musfeldt∗, Y.-J. Wang, H. Negishi, M. Inoue, J. Sarrao, and Z. Fisk, “Far-infrared investigations of η-Mo4O11: Using a magnetic field to open the gap,” Ferroelectrics, 249, 51 (2001). 
  59. B. Jones, I. Olejniczak, J. Dong, J. Pigos, Z.-T. Zhu, A. Garlach, J. Musfeldt∗, H.-J. Koo, M.-H. Whangbo, J. Schlueter, B. Ward, E. Morales, A. Kini, R. Winter, R.J. Mohtasham, and G. Gard, “Optical spectra and electronic band structure calculations of β-(ET)2SF5RSO3 (R = CH2CF2, CHFCF2, and CHF): Changing electronic properties by chemical tuning of the counterion,” Chemistry of Materials, 12, 2490 (2000). 
  60. Z.-T. Zhu, S. Chowdhary, V. Long, J. Musfeldt∗, H.-J. Koo, M.-H. Whangbo, X. Wei, H. Negishi, M. Inoue, J. Sarrao, and Z. Fisk, “Polarized optical reflectance and electronic structure of the chargedensity-wave materials β- and γ-Mo4O11,” Physical Review B, 61, 10057 (2000). 
  61. S. M. Baker, J. Dong, G. Li, Z.-T. Zhu, J. L. Musfeldt∗, J. A. Schlueter, M. E. Kelly, R. G. Daugherty, and J. M. Williams, “Infrared studies of low-temperature symmetry breaking in the perrhenate family of ET-based organic molecular conductors,” Physical Review B, 60, 931 (1999). 
  62. V. Long, Z.-T. Zhu, J. Musfeldt∗, X. Wei, H.-J. Koo, M.-H. Whangbo, J. Jegoudez, and A. Revcolevschi, “Polarized optical reflectance and electronic band structure of α-NaV2O5,” Physical Review B, 60 15721 (1999). 
  63. I. Olejniczak, B. Jones, Z.-T. Zhu, J. Dong, J. Musfeldt∗, J. Schlueter, E. Morales, U. Geiser, P. Nixon, R. Winter, and G. Gard, “Optical properties of β"-(ET)2SF5RSO3 (R=CH2CF2, CHFCF2): Changing physical properties by chemical tuning of the counterion,” Chemistry of Materials, 11, 3160 (1999). 
  64. J. Pigos, Z.-T. Zhu, and J. Musfeldt∗, “Optical properties of a supramolecular assembly containing polydiacetylene,” Chemistry of Materials, 11, 3275 (1999). 
  65. Z.-T. Zhu, V. Long, J. Musfeldt∗, X. Wei, J. Sarrao, Z. Fisk, H. Negishi, M. Inoue, H. Koo, and M. Whangbo, “High field optical response of η-Mo4O11,” Journal de Physique IV, 9, 251 (1999). 
  66. Z.-T. Zhu, J. Musfeldt∗, Y. Wang, J. Sarrao, Z. Fisk, H. Negishi, and M. Inoue, “Infrared study of the broken symmetry ground states in β-Mo4O11,” Synthetic Metals, 103, 2238 (1999). 
  67. Z.-T. Zhu, Y. Zhang, J.-W. Xie, and M. Jiang∗, “Studies on the specific interaction between the model polymer of polyurethane hard-segment and poly (styrene-co-acrylonitrile),” Chemical Journal of Chinese Universities, 18, 1353 (1997).


Contact Information:

Dr. Zhengtao Zhu
Department of Chemistry and Applied Biological Sciences
South Dakota School of Mines and Technology
Rapid City, SD 57701

Email: Zhengtao.Zhu@sdsmt.edu
Phone:
605 394 2447